
3/5/09

1

Lecture 13

CS 421 Lecture 13
  Execution of dynamic languages

  Sun HotSpot run-time system for Java
  Tags, just-in-time compilation, reflection

  Memory management
  Memory layout; definition of “garbage”
  Reference-counting
  Garbage collection

  Non-compacting (mark-and-sweep)
  Compacting

Lecture 13

Dynamic languages
  Automatic memory management
  Tagged values (for gc, run-time type-checking, reflection)
  Sometimes: dynamic type-checking
  Sometimes: reflection
  Usually: execute virtual machine code

  Will use Sun HotSpot Java virtual machine as example.

Lecture 13

Java HotSpot run-time system
  Developed around 1999 – replaced existing widely-used

Java VM
  Described in several places, e.g.

http://java.sun.com/products/hotspot/whitepaper.html
  HotSpot is VM used in java program, and embedded in

many browsers

(Note re: above document: word “compiler” used to refer
to translator from Java bytecode to native machine code,
not translator from source code.)

Lecture 13

Java HotSpot run-time system
  Garbage collection
  Two-word object headers
  Executes .class files (Java VM code)

  “Just-in-time” compilation

  Meta-objects represented as objects

Lecture 13

Meta-objects represented as objects
  Class and Method are classes
  Each class corresponds to a Class object

  Methods of class Class include getDeclaredMethods(),
getFields(), …

  Each method corresponds to a Method object
  Methods of class Method include getParameterTypes,

getReturnType, …

  E.g. can invoke methods that are detected dynamically –
e.g. search all objects reachable from one object, and
invoke method print on any object whose class contains a
print method.

Lecture 13

Two-word headers
  Every object in heap is preceded by two words

  First word is pointer to Class object of this method’s class
(which gives layout of object)

  Second word contains g.c. info
  Arrays contain third word giving length

3/5/09

2

Lecture 13

Just-in-time compilation
  Methods obtained in bytecode form (.class files)

translated to native machine code on the fly
  Numerous optimizations employed

  Very important optimization: inlining

  Level of optimization determined by monitoring
execution
  Heavily used methods are optimized, and possibly re-

optimized more aggressively

  Because this is most innovative aspect of HotSpot, it is
main topic of HotSpot papers.

Lecture 13

Automatic memory management
  Memory in heap consists of objects containing pointers to

other objects.
  Objects in heap are accessed in program by using

pointers stored in local variables, which are on stack.
  Therefore, only heap objects that matter are reachable

either directly from stack, or from fields of other
reachable heap objects

  Objects that are not reachable are called garbage.
  Automatic memory management attempts to

make garbage cells available for allocation.

Lecture 13

Creation of garbage
  Example:
 let f n y = let x = numbers 1 n (* list [1;2;…;n] *)
 in x@y

Creates n “cons cells” of garbage, because x@y makes a
copy of x.

Lecture 13

Representing free memory

 Alternatives: free list or free area
  Free list: Free memory is placed on a linked list.

Request for memory iterates over list looking for
big enough memory area.

  Free area: Unused area of memory reserved for
allocation. Memory allocated from bottom of this
area.

 Will discuss free list representation first

Lecture 13

History of a heap object, using “free list” system

Heap
contains data
that have
been
allocated and
data on free
list

Lecture 13

History of a heap object, using “free list” system

Program executes:
x = new C(); or
x = malloc(); or
x = a::b
(x a local
variable of
function f)

3/5/09

3

Lecture 13

History of a heap object, using “free list” system
Return from f.
Assume no other
objects point to
the new object.
New object no
longer reachable
(but not
allocatable
either)

Lecture 13

History of a heap object, using “free list” system

Eventually, object
is returned to free
list.

Lecture 13

Three types of memory cells
  Allocatable – i.e on free list

  Initially contains all cells

  Reachable
  Obtained by request for heap memory
  Still reachable from stack (possibly via other heap objects)

  Neither
  Once reachable, now not – e.g. was reachable from a local

variable of function f, but have returned from f
  Was not returned to free list

  “Neither” category is most interesting – memory could
be made allocatable.

Lecture 13

Reference counting
  Use free list
  Track number of pointers to every object
  Adjust count each time a pointer is copied/assigned

  “p = q”: Increment refcnt(*q)
 Decrement refcnt(*p)
 if refcnt(*p)=0 then return *p to free list
 and decrement refcnt of all
 objects that *p points to

  All objects go to free list as soon as they are non-reachable –
no “neither” category

Lecture 13

Reference counting (cont.)

  Advantages
  Cost spread out over computation

  Disadvantages
  Cannot easily handle cycles among objects (which occur a lot)

Lecture 13

Garbage collection

  Two methods
  Non-copying (mark-and-sweep)

  Uses free list representation

  Copying
  Uses free area representation

  Unlike reference-counting:
  Cells go into “neither” category temporarily
  Are recovered all at once
  Costs vary according to method, but happen all at once –

“g.c. pause” – and are not amortized

3/5/09

4

Lecture 13

Non-copying garbage collection

  Use free list
  Reserve one bit in each object header, called the

“reachable” bit
  Start with reachable bit zero in every header
  Traverse reachable data, setting reachable bit
  Iterate over entire heap. If reachable bit is 1, reset it; if it

is zero, place that memory chunk on free list
  Observations

  Reachable data is not moved
  Reachable data remains spread across memory
  Cost is linear in total size of heap

Lecture 13

Copying garbage collection

  Use free area
  Half of memory is reserved (!); all allocation happens in

other half, called half-in-use.
  Half-in-use is divided into used area and free area
  Allocate memory from bottom of free area. When free

area is exhausted, do g.c.
  G.C.: Traverse reachable object, moving them to

reserved area and adjusting all pointers. Reserved area
now becomes half-in-use. Free area is area on top of
moved objects.

Lecture 13

History of a heap object, using “free area” system

Heap
contains data
that have
been
allocated –
some
reachable,
some not

Lecture 13

History of a heap object, using “free area” system

Program executes:
x = new C(); or
x = malloc(); or
x = a::b
(x a local
variable of
function f)

Lecture 13

History of a heap object, using “free area” system

Return from f.
Assume no other
objects point to
the new object.
New object no
longer reachable
(but not
allocatable
either)

Lecture 13

History of a heap object, using “free area” system

Eventually, g.c.
is done and
moves
reachable data
to reserved
memory area.

3/5/09

5

Lecture 13

Copying garbage collection (cont.)

  Observations
  Data is moved; all pointers must be adjusted

  Works only if garbage collector knows which values are pointers.

  Reachable data are compressed
  Cost is linear in size of reachable data
  Traversal normally done breadth-first

Lecture 13

Generational garbage collection

  Variant of copying collector
  Most data either long-lived or short-lived
  Both methods described spend a lot of time traversing

and/or copying long-lived data
  To avoid this, divide memory into four spaces:

  Young-in-use
  Young reserved
  Old-in-use
  Old reserved

  Start allocating from young-in-use, proceed as for regular
copying g.c.

Lecture 13

Generational garbage collection (cont.)

  When a g.c. does not succeed in recovering memory for
young space, move data from young space to old-in-use.
Continue to allocate from young-in-use.

  When old-in-use fills up, copy to old reserve.
  Observations

  Copying of old space a rare event
  GC in young space inexpensive because most young memory

is garbage
  Can extend idea to more than two “generations”

Lecture 13

Java HotSpot run-time system g.c.

  HotSpot uses two-generation collector
  Young generation uses copying collector
  Old generation uses mark-and-compact method –

compact in place

